
C H A P T E R 15

Volatility as an Asset Class
and the Smile

1. Introduction to Volatility as an Asset Class

Acceptance of implied volatility as an asset class is growing.The main players are (1) institutional
investors, (2) hedge funds, and (3) banks. This increased liquidity facilitates the engineering of
structured products with embedded volatility.Also, standardized trading in volatility of volatility
and skew becomes possible.

Example:

It appears that institutional investors are migrating to four types of strategies for going
long exposure to implied volatility. Among the largest institutional investors, variance
swap based strategies are the most popular.

Variance swaps offer the easiest and most liquid way to get exposure to volatility. Insti-
tutional investors and hedge funds are the target audience for the new services offered in
this field. These services enable customers to trade variance swaps through Bloomberg
terminals. Volumes in the inter-dealer market and with clients prompted the move. Vari-
ance swaps are used to go long or short volatility on an index or equity with a selected
maturity.

Pure volatility instruments, such as volatility swaps and variance swaps, make sense
for institutional investors, because volatility is both a diversifier on the downside and a
global hedge on an equity portfolio.

Institutional investors such as pension funds and insurance companies clearly need to
diversify. While they are moving to other asset classes, such as hedge funds, they also do
not want to reduce their exposure to equity markets, particularly if there is a good chance
of equity markets performing well. With this in mind, they are increasingly turning to
long-term volatility strangles.

The main external driver of the current ongoing rise in volatility is M & A activity.
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Requests for forward volatility strategies to hedge structured products are also on the
rise, particularly among private banks. These strategies fit their needs, as dealers sold
a lot of forward volatility certificates and warrants to them last year.

The launch of newly listed volatility products, such as the Chicago Board Options
Exchange’s soon-to-launch options on the CBOE S&P500 Volatility Index (VIX), was a
key driver of investor demand for volatility products simply because it made it easier to
trade volatility. The many investors who cannot trade OTC markets and the demand for
similarly structured OTC products both point to a healthy take-up of the CBOE’s VIX
option contract. This is significant because trading volatility in its pure form as an asset
class is established. This may well be a catalyst for encouraging trading in volatility of
volatility and skew. (IFR, 2004)

2. Volatility as Funding

For market professionals and hedge funds, the issue of how tofundan investment is as important
as the investment itself. After all, a hedge fund would look for the “best way” to borrow funds
to carry a position. The best way may sometimes carry a negative interest. In other words, the
hedge fund would make money from the investmentandfrom the funding itself.

The normal floating Libor funding one is accustomed to think about is “risk-free,”1 but at the
same time may not always carry the lowest funding cost. Suppose a practitioner starts with the
standard floating Libor-referenced loan that is rolled over at intervals of lengthδ in order to fund
a long position and then show how volatility can be used as an alternative funding strategy.Also,
suppose a long position involves buying a straight (default-free) Eurobond with couponrt0 . The
market professional borrowsN and buys the bond. The outcome will be similar to an interest
rate swap.

Now suppose the bond under consideration is the liquid emerging market benchmark
Brazil-40. In Figure 15-1 this is represented as if it has annual coupon payments over four
settlement dates. In general, hedge funds use strategies other than using straightforward Libor
funding to buy the bond. One common strategy is calledrelative valuetrade. Suppose the
hedge fund has calculated that the Venezuelan benchmark Eurobond may lose value during the
investment period.2 Then the hedge fund will search for the Venezuelan bond in the repo market,
“borrow” the bond (instead of borrowing USD) and then sell it to generate the needed cash of
N . Using this cash the hedge fund buys the Brazilian bond. The Venezuelan bond has a coupon
of Rt0 as the Brazilian bond assumed to be tradingat parvalueN = 100.

The value of the Venezuelan bond may decline during the investment period and the hedge
fund can cover the short bond position at a lower price than the originalN .3

Now consider the alternative shown in Figure 15-2. If the purpose is funding a position,
then why not select an appropriatevolatility, sell options of valueN , and thendelta-hedge these
option positions? In fact, this would fund the bond position with volatility. We analyze it below.

First we know from Chapter 8 thatdelta-hedged short option positions are convex exposures
that will pay thegamma. These payouts are unknown initially. As market volatility is observed,
the hedge is dynamically adjusted, and depending on the market volatility the hedge fund will
face a cash outflow equal togamma. To the hedge fund this is similar to paying floating money
market interest rates.

1 See the section on the zero in finance in Chapter 5.

2 Both bonds are assumed to be in the same currency, say USD, and have similar maturities.

3 The differencert0 − Rt0 is known as the carry of the position. It could be positive or negative. Obviously
positions with positive carry can be continued longer.
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Note one difference between loan cash flows and volatility cash flows: In volatility funding
there is no payback of the principalN at the end of the contract. In this sense theN is borrowed
and then paid back gradually over time asgammagains. One example is provided below from
the year 2005.

Example:

Merrill notes “one of the most overcrowded trades in the market has been to take
advantage of the long term trading range,” by selling volatility and “earning carry
via mortgage-backed securities.”

Market professionals use options as funding vehicles for their positions. The main problem
with this is that in many cases option markets may not have the depth needed in order to sell
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large chunks of options. If such selling depresses prices (i.e. volatility), then this idea may be
hard to implement no matter how attractive it looks at the outset.

3. Smile

Options were introduced as volatility instruments in Chapter 8. This is very much in line with
the way traders think about options. We showed that when we deal with options as volatility
instruments mathematically we arrived at the same formula, in this case the same partial differ-
ential equation (PDE) as the Black-Scholes PDE.Mathematicallythe approach was identical to
the standard textbook treatment that considers options as directional instruments.4 Yet, although
the interpretation in Chapter 8 is more in line with the way traders and option markets think, in
that discussion there was still a major missing component.

It turns out that everything else being the same, an out-of-the-money put or call has a higher
implied volatility than an ATM call or put. This effect, alluded to several times up to this point,
is called thevolatility smileand is discussed in this chapter. However, in order to do this in this
chapter we adopt still another interpretation of options as instruments.

The discussion in Chapter 8 showed that the option price (after some adjustments for interest
receipts and payments) is actually related to theexpected gammagains due to volatility in the
underlying. The interpretation we use in this chapter will show that these expected gains will
depend on the option’sstrike. One cost to pay for this interesting result is the need for a different
mathematical approach. The advantage is that the smile will be thenatural outcome. A side
advantage is that we will discuss a dynamic hedging strategy other than the well-knowndelta-
hedging. In fact, we start the chapter with a discussion of options from a more “recent” point of
view which uses the so-calleddirac deltafunctions. It is perhaps the best way of bringing the
smile explicitly in option pricing.

4. Dirac Delta Functions

Consider the integral of the Gaussian density with meanK given below∫ ∞

−∞

1√
2πβ2

e
− 1

2
(x−K)2

β2 dx = 1 (1)

whereβ2 is the “variance” parameter. Letf(x) denote the density:

f(x) =
1√

2πβ2
e

− 1
2

(x−K)2

β2 (2)

We will use thef(x) as a mathematicaltool instead of representing a probability density associ-
ated with a financial variable. To see how this is done, suppose we consider the values ofβ that
sequentially go from one toward zero. The densities will be as shown in Figure 15-3. Clearly, if
β is very small, the “density” will essentially be a spike atK, but still will have an area under
it that adds up to one.

4 On one hand, in this textbook approach, calls are regarded as a bet in increasing prices, and put a bet on decreasing
prices. This, however, would be true under the risk-adjusted probability and leaves the wrong impression that calls and
puts are different in some sense. On the other hand, the volatility interpretation shows that the calls and puts are in fact
the same from the point of view of volatility.
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Now consider the “expectations” calculated with such anf(x). LetC(xt) be a random value
that depends on the random variablext, indexed by the timet. Then we can write

E[C(xt)] =
∫ ∞

−∞
C(xt)f(xt)dxt (3)

Now we push theβ toward zero. The densityf(xt) will become a spike atK. This means
that all values ofC(xt) will be multiplied by a probability of almost zero, except the ones around
xt = K.After all, at the limit thef(.) is nonzero only aroundxt = K. Thus at the limit we obtain

lim
β→0

∫ ∞

−∞
C(xt)f(xt)dxt = C(K) (4)

The integral of the product of a functionC(xt) and of thef(xt) asβ goes to zeropicks upthe
value of the function atxt = K.

Hence we define theDirac delta functionas

δK(x) = lim
β→0

f(x, K, β) (5)

Remember that theβ determines how close thef(x) is to a spike atK. The integral can then
be rewritten as ∫ ∞

−∞
C(K)δK(x)dxt = C(K) (6)

This integral shows the most useful property of diracdeltafunction for our purposes. Essentially,
the diracdeltapicks up the value ofC(xt) at the pointxt = K. We now apply this property to
option payoffs at expiration.
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5. Application to Option Payoffs

The major advantage of the diracdeltafunctions, interpreted as the limits of distributions, is in
differentiating functions that have points that cannot be differentiated in the usual sense. There
are many such points in option trading. The payoff at the strikeK is one example. Knock-in,
knock-out barriers is another example. Diracdeltawill be useful for discussing derivatives at
those points.

Before we proceed, for simplicity we will assume in this section that interest rates are equal
to zero:

rt = 0 (7)

We also assume that the underlyingST follows the risk-neutral SDE, which in this case will be
given by

dST = σ (St) StdWt (8)

Note that with interest rates being zero, the drift is eliminated and that the volatility isnotof the
Black-Scholes form. It depends on the random variableSt. Let

f(ST ) = max[ST − K, 0]

= (ST − K)+ (9)

be the vanilla call option payoff shown in Figure 15-4. The function is not differentiable at
ST = K, yet its first order derivative is like a step function. More interestingly, thesecond
order derivative can be interpreted as a diracdelta function. These derivatives are shown in
Figures 15-4 and 15-5.

Now write the equivalent of Ito’s Lemma in a setting where functions have kinks as in
the option payoff case. This is calledTanaka’s formulaand essentially extends Ito’s Lemma to
functions that cannot be differentiated at all points. We can write

d(St − K)+ =
∂(St − K)+

∂St
dSt +

1
2

∂2(St − K)+

∂S2
t

σ(St)2dt (10)
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where we define

∂(St − K)+

∂St
= 1St>K (11)

∂2(St − K)+

∂S2
t

= δK(St) (12)

Taking integrals fromt0 to T we get:

(ST − K)+ = (St0 − K)+ +
∫ T

t0

1St>KdSt +
1
2

∫ T

t0

∂2(St − K)+

∂S2
t

σ(St)2dt (13)

where the first term on the right-hand side is the time value of the option at timet0, and is
known with certainty. We also know that with zero interest rates, the option priceC(St0) will be
given by

C(St0) = EP̃
t0(ST − K)+ (14)

Now, using the risk-adjusted probabilitỹP , (1) apply the expectation operator to both sides of
equation (13), (2) change the order of integration and expectation, and (3) use the property
of diracdeltafunctions in eliminating the terms valued at points other thanSt = K. We obtain
the characterization of the option price as:

EP
t

[
(ST − K)+

]
= (St0 − K)+ +

∫ T

t0

σ (K)2 φt (K) dt

= C (St0) (15)

where φt(.) is the continuous density function that corresponds to the risk-adjusted
probability of St.5 This means that the time value of the option depends (1) on the intrinsic
value of the option, (2) on thetime spentaroundK during the life of the option, and (3) on the
volatility at that strike, σ(K).

The main point for us is that this expression shows that the option price dependsnot on
the overall volatility, but on the volatility ofSt aroundK. This is exactly what the notion of
volatility smile is.

5.1. An Interpretation of Dynamic Hedging

There are many dynamic strategies that replicate an option’s final payoff. The best known is
delta hedging. Indelta hedging the financial engineer will buy or sell thedelta = Dt units

5 We assume that a density exists.
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of the underlying, borrow any necessary funds, and adjust theDt as the underlyingSt moves
over time. Ast → T , the expiration date, this will duplicate the option’s payoff. This is the case
because, as the time value goes to zero the option price merges with(ST − K)+.

However, there is an alternative dynamic hedging procedure that is similar to the approach
adopted in the previous section. The dynamic hedging technique, called stop-loss strategy, is as
follows.

In order toreplicatethe payoff of the long call, holdoneunit of St if K < St. Otherwise
hold no St. This strategy requires that asSt crosses levelK, we keep adjusting the position
as soon as possible. Either buy one unit ofSt, or sell theSt immediately asSt crosses the
K from left to right or from right to left respectively. The P/L of this position is given by
the term

1
2

∫ T

t0

∂2 (St0 − K)+

∂S2
t

σ (St)
2
dt (16)

Clearly the switches atSt = K cannot be done instantaneously at zero cost. The trader is mov-
ing with time Δ while the underlying Wiener process is moving at afaster rate

√
Δ. These

adjustments are shown in Figures 15-6 and 15-7. The resulting hedging cost is the options
value.

6. Breeden-Litzenberger Simplified

The so-called Breeden-Litzenberger Theorem is an important result that shows how one can back
out risk-adjusted probabilities from liquid arbitrage-free option prices. In this section we discuss
a trader’s approach to Breeden-Litzenberger. This approach will show the theoretical relevance
of some popular option strategies used in practice. Below, we use a simplified framework which
could be generalized in a straightforward way. However, we will not generalize these results, but
instead in the following section use the diracdeltaapproach to prove the Breeden-Litzenberger
Theorem.

Consider a simple setting where we observe prices of four liquid European call options,
denoted by{C1

t , . . . , C4
t }. The options all expire at timeT with t < T . The options have
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strike prices denoted by{K1 < · · · < K4} with

Ki − Ki−1 = ΔK (17)

Hence, the strike prices are equally spaced. Apart from the assumption that these options are
written on the same underlyingSt which does not pay dividends, we make no distributional
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assumption aboutSt. In fact the volatility ofSt can be stochastic and the distribution is not
necessarily log normal.

Finally we use the Libor rateLt to discount cash flows to be received at timeT . The discount
factor will then be given by

1
(1 + Ltδ)

(18)

Next we define a simple probability space. We assume that the strike prices define the fourstates
of the worldwhereST can end up. Hence the state space is discrete and is assumed to be made
of only four states,{ω1, . . . , ω4}.6

ωi = Ki (19)

We then have four risk-adjusted probabilities associated with these states defined as follows:

p1 = P
(
ST = K1) (20)

p2 = P
(
ST = K2) (21)

p3 = P
(
ST = K3) (22)

p4 = P
(
ST = K4) (23)

The arbitrage-free pricing of Chapter 11 can be applied to these vanilla options:

Ci
t =

1
(1 + Ltδ)

EP̃
t

[
(ST − K, 0)+

]
(24)

The straightforward application of this formula using the probabilitiespi gives the following
pricing equations, where possible payoffs are weighed by the corresponding probabilities.

C1
t =

1
(1 + Ltδ)

[
p2ΔK + p3 (2ΔK) + p4 (3ΔK)

]
(25)

C2
t =

1
(1 + Ltδ)

[
p3 (ΔK) + p4 (2ΔK)

]
(26)

C3
t =

1
(1 + Ltδ)

[
p4 (ΔK)

]
(27)

Next we calculate the first differences of these option prices.

C1
t − C2

t =
1

(1 + Ltδ)
[
p2ΔK + p3 (ΔK) + p4 (ΔK)

]
(28)

C2
t − C3

t =
1

(1 + Ltδ)
[
p3 (ΔK) + p4 (ΔK)

]
(29)

Finally, we calculate theseconddifference and obtain the following interesting result:

(
C1

t − C2
t

) − (
C2

t − C3
t

)
=

1
(1 + Ltδ)

p2ΔK (30)

Divide byΔK twice to obtain

Δ2C

ΔK2 =
1

(1 + Ltδ) ΔK
p2 (31)

6 The following discussion can continue unchanged by assumingn discrete states.
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where

Δ2C =
(
C1

t − C2
t

) − (
C2

t − C3
t

)
(32)

This is the well-known Breeden-Litzenberger result in this very simple environment. It has
interesting implications for the options trader.

Note that (
C1

t − C2
t

) − (
C2

t − C3
t

)
=

(
C1

t + C3
t

) − 2C2
t (33)

In other words, this is an option position that is long two wings and short the center twice. In
fact this is a butterfly centered atK2. It turns out that the arbitrage-free market value of this
butterfly multiplied by the(1+Ltδ)ΔK gives the risk-adjusted probability that the underlying
St will end up at stateK2. LettingΔK → 0 we get

∂2C

∂K2 =
1

(1 + Ltδ)
φ (ST = K) (34)

whereφ(ST = K) is the (conditional) risk adjusteddensityof the underlying at timeT .7

This discussion illustrates one reason why butterflies are traded as vanilla instruments in
option markets. They yield the probability associated with their center. Below we prove the
Breeden-Litzenberger result using the diracdeltafunction.

6.1. The Proof

The idea behind the Breeden-Litzenberger result has been discussed before. It rests on the
fact that by using liquid and arbitrage-free options prices we can back out the risk-adjusted
probabilities associated with various states of the world in the future. The probabilities will
relate to the future values of the underlying price, theST .

The theorem asserts that (a) if a continuum of European vanilla option prices exist for all
0 ≤ K, and (b) if the function giving theC(St, K) is twice differentiable with respect toK,
then we have

∂2C

∂K2 =
1

(1 + Ltδ)
φ (ST = K) (35)

Whereφ (ST = K|St0) is the conditional risk-adjusted density of theST . In other words, if
we had a continuum of vanilla option prices, we could obtain the risk-adjusted density with a
straightforward differentiation. We now prove this using the diracdeltafunctionδK(ST ).

Apply the twice differential operator to the definition of both sides of the arbitrage-free price
C(St, K). By definition, this means

∂2

∂K2 C(St, K) =
1

(1 + Ltδ)
∂2

∂K2

∫ ∞

0
(ST − K)+φ(ST )dST (36)

Assuming that we can interchange the operators and realizing thatφ (ST ) does not depend on
theK we obtain

∂2

∂K2 C (St, K) =
1

(1 + Ltδ)

∫ ∞

0

∂2

∂K2 (ST − K)+ φ (ST ) dST (37)

7 Remember that if the density atx0 is f(x0), thenf(x0)dx is the probability of ending aroundx0. In other words
we have

p2 ∼ φ
(
ST = K2)ΔK
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But

∂2

∂K2 (ST − K)+ = δK (ST ) (38)

is a diracdelta, which means that

∂2

∂K2 C(St, K) =
1

(1 + Ltδ)

∫ ∞

0
δK (ST )φ(ST ) dST (39)

The previous discussion and equation (4) tells us that in this integral theφ (ST ) is being
multiplied by zero everywhere except forST = K. Thus,

∂2

∂K2 C (St, K) =
1

(1 + Ltδ)
φ (ST = K) (40)

To recover the risk-adjusted density just take the second partial of the European vanilla option
prices with respect toK. This is the Breeden-Litzenberger result.

7. A Characterization of Option Prices as Gamma Gains

The question then is, how does a trader “characterize” an option using these hedging gains?
First of all, in liquid option markets the order flow determines the price and the trader does not
have to go through a pricing exercise. But still, can we use these trading gains to represent the
frame of mind of an options trader?

The discussion in the previous section provides a hint about this issue. The trader buys or
sells an option with strike priceK. The cash needed for this transaction is either borrowed or
lent. Then the traderdeltahedges the option. Finally, this hedge is adjusted as the underlying
price fluctuatesaround the initialSt0 .

According to this, the trader could add the (discounted) future gains (payouts) from these
hedge adjustments and this would be the truetime-valueof the option, besides interest or other
expenses. The critical point is that these future gains need to be calculated at the initialgamma,
evaluated at the initialSt0 , and adjusted for passing time.

We can explain this statement. First, for simplicity assume interest rates are equal to zero.
We then let the price of the vanilla call be denoted byC(St, t). Then by definition we have

C (St0 , T ) = Max [St0 − K, 0] (41)

This will be the future value of the option if the underlying ended up at theSt0 at timeT .
Now, this value is equal to the initial price plus how much the time value has changed between
t0 andT ,

C (St0 , T ) = C (St0 , t0) +
∫ T

t0

∂C

∂t

∣∣∣∣∣
St=St0

dt (42)

Now, we know from the Black-Scholes partial differential equation that

∂C

∂t
=

1
2

∂2C

∂S2
t

σ2
t (St, t) (43)

Substituting and reorganizing equation (42) above becomes

C (St0 , t0) = Max [St0 − K, 0] +
∫ T

t0

1
2

∂2C (St0 , t)
∂S2

t

σ2
t (St0 , t) dt (44)
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Note that on the right-hand side the integral is evaluated at the constantSt0 so we don’t need to
take expectations.

According to this, the trader is valuing the option at timet0 by adding the intrinsic value
and thegammagains evaluated with agammaat St0 and a volatility centered atSt0 . Still, the
time t changes and this will change thegammaover time. Thus, it is important to realize that
the trader isnot valuing the option by looking at the expected value of the futuregammagains
evaluated atrandomfutureSt. Thegammais evaluated at the initialSt0 .

7.1. Relationship to Tanaka’s Formula

The discussion above is also consistent with the option interpretation obtained using Tanaka’s
formula. Consider the value of the option as shown above, again

C(St0 , t0) = Max [St0 − K, 0] +
∫ T

t0

1
2

∂2C (St0 , t)
∂S2

t

σ2
t (St0 , t)dt (45)

Now we know from Breeden-Litzenberger that

∂2C (St0 , t)
∂S2

t

σ2
t (St0 , t) = Φ(St0 , t|St0) (46)

where theΦ(St0 , t|St0) is the risk-adjusted density ofSt at timet. Substituting this in the option
value

C(St0 , t0) = Max [St0 − K, 0] +
∫ T

t0

1
2
σ2

t (St0 , t) Φ(St0 , t|St0)dt (47)

This is the same equation we obtained by using diracdelta functions along with the Tanaka
formula. The second term on the right-hand side was calledlocal time. In this case the local
time is evaluated for the ATM option with strikeK = St0 .

8. Introduction to the Smile

Markets trademanyoptions with the same underlying, but different strike prices and different
expirations. Does the difference in strike price between options that are identical in every other
aspect have any important implications?

At first, the answer to this question seems to be no. After all, vanilla options are written
on an underlying, with say, priceSt, and this price will have onlyonevolatility at any timet,
regardless of the strike priceKi. Hence, it appears that, regardless of the differences in the strike
price, the implied volatility of options written on the same underlying, with the same expiration,
should be the same.

Yet, this first impression is wrong. In reality, options that are identical in every respect, except
for their strike, in general, havedifferentimplied volatilities. Overall, the more out-of-the-money
a call (put) option is, the higher is the corresponding implied volatility. This well-established
empirical fact is known as the volatilitysmile, or volatility skew, and has major implications
for hedging, pricing, and marking-to-market of many important instruments. In the remainder
of this chapter, we discuss the volatility smile and skews using caps and floors as vehicles for
conveying the main ideas. This will indirectly give us an opportunity to discuss the engineering
of this special class of convex instruments.

From this point and on, in this chapter we will use the termsmileonly. This will be the case
even when the smile is, in fact, a one-sidedskew. However, whenever relevant, we will point
out the differences.
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9. Preliminaries

The volatility smile has important implications for trading, hedging, and pricing financial instru-
ments. To illustrate how far things have come in this area, we look at a position taken with the
objective of benefiting from abnormal conditions regarding the volatility smile.

We can trade stocks, bonds, or, as we have seen before, the slope of the yield curve. We may,
for example, expect that the long-term yields will declinerelative tothe short-term yields. This
is called a flattening of the yield curve and it invites curve-flattening strategies that (short) sell
short maturities, and buy long maturities. This can be done using cash instruments (i.e., bonds)
or swaps.

In any case, such trades have become routine in financial markets. A more recent relative
value trade relates to the volatility smile. Consider the following episode.

Example:

Over the last month, European equity options traders have seen interest by contra-
rian investors, namely hedge funds, in buying at-the-money volatility and selling out-
of-the-money volatility to take advantage of a skew in volatility levels in certain
markets.

. . . the skew trade involves an investor buying at-the-money vol and selling out-of-the-
money vol. Due to supply/demand pressures, the level of out-of-the-money vol sometimes
rises higher than normal. In other words, the spread between out, and at-the-money-
volatility increases, causing a so-called skew. Investors put on the trade in anticipation
of the skew dissipating.

[A trader] explained that along with the bull run of US and European equity markets has
come a sense of unease among some investors regarding a downturn. Many have thus
sought protection via over-the-counter put contracts. Because out-of-the-money puts are
usually cheaper than at-the-money puts, many investors have opted for the former. The
heavy volume has caused out-of-the-money vol levels to rise. Many investors want crash
protection but today puts are too expensive. So, instead of buying today at 100 they buy
puts at 80. (Based on an article in Derivatives Week).

According to this example, equity investors that had heavily invested during the “stock
market bubble” of the 1990s were looking forcrash protection. They were long equities and
would have suffered significant losses if markets crashed. Instead of selling the stocks that they
owned, they bought put options. With a put an investor has the right tosell the underlying stocks
at a predetermined price, say,K. If market price declines belowK, the investor would have some
protection.

According to the reading, the large number of investors who were willing to buy puts
increased, first, the at-the-money (ATM) volatility.8 The ATM options became expensive. To
lower the cost of insurance sought, investors instead bought options that were, according to the
reading, 20% out-of-the-money. These options were cheaper. But as more and more investors
bought them, the out-of-the-money volatility started to increase relative to at-the-money volatil-
ity of the same option series. This led to an abnormally steep skew.9

8 This is, of course, somewhat circular. If there is a fear of a crash, one would normally expect such an increase in
the volatility anyway.

9 These out-of-the-money puts would still be cheaper in monetary terms when compared with ATM puts. Only, the
volatility that they imply would be higher. Another way of saying this is that if we plugged the ATM volatility into the
Black-Scholes formula for these out-of-the-money options, they would end up being even cheaper.
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The reading suggests that this “abnormal” skew may have attracted some hedge funds who
expected the abnormality to disappear in the longer run. According to one theory, these funds
sold out-of-the-money volatility and bought ATM volatility. This position will make money if
the skewflattensand out-of-the-money volatility decreasesrelative tothe ATM volatility.10 As
this example shows, the skew, or smile, should be considered as an integral part of financial
markets activity. However, as we see in this section, its existence causes several complications
and difficulties in financial modeling and in risk management.

10. A First Look at the Smile

The volatility smile can be a confusing notion, and we need to discuss some preliminary ideas
before getting into the mechanics of pricing and market applications. It is well known that
the Black-Scholes assumptions are not very realistic. And yet, the Black-Scholes formula is
routinely used by options traders, although these traders know better than anybody else that the
assumptions behind the model are problematic. One of the major Black-Scholes assumptions,
for example, is that volatility isconstantduring the life of an option. How can a trader still use
the Black-Scholes formula if the realized volatility is known to fluctuate significantly during the
life of the option?

If this Black-Scholes assumption is violated, wouldn’t the price given by the Black-Scholes
formula be “wrong,” and, hence, the volatility implied by the formula be erroneous?This question
needs to be carefully considered. In the end, we will see that there really are no inconsistencies
in traders’ behavior. We can explain this as follows.

1. First, note that the Black-Scholes formula issimpleand depends on a small number
of parameters. In fact, the only major parameter that it depends on is the volatility,σ.
A simple formula has some advantages. It is easy to understand and remember. But, more
importantly, it is also easy to realizewhereor whenit may go wrong. A simple formula
permits developing ways to correct for any inaccuraciesinformallyby making subjective
adjustments during trading. The Black-Scholes formula has one parameter, and it may be
easier to remember how to “adjust” this parameter to cover for the imperfections of the
formula.11

2. An important aspect of the Black-Scholes formula is that it has become aconvention.
In other words, it has become astandardamong professionals and also in computer
platforms. The formula provides a way to connect a volatility quote to a dollar value
attached to this quote. This way traders use thesameformula to put a dollar value on a
volatility number quoted by the market. This helps in developing common platforms for
hedging, risk managing, and trading volatility.

3. Thus, once we accept that the use of the Black-Scholes formula amounts to a convention,
and that traders differ in their selection of the value of the parameterσ, then the critical
process is no longer the option price, but the volatility. This is one reason why in many
markets, such as caps, floors, and swaptions markets, the volatility is quoteddirectly.

10 However, a similar effect would be observed if investors were unwinding their previous insurance bought when
markets were at, say, 120 and buying new insurance atK =80. This is equivalent to rolling over their protection.
Hence, it is difficult to tell what the real driving force behind this observation is, namely, whether it is due to speculative
relative value plays or simply rolling over the positions.

11 In the theory of prediction, there is the notion ofparsimony. During a prediction exercise it is costly to have too
many parameters because errors are more likely to occur. The notion applies to the numerical calculation of complex
options prices. If a model has fewer parameters to be calibrated, the likelihood of making mistakes decreases.
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One way to account for the imperfections of the Black-Scholes assumptions would
be for traders to adjust the volatility parameter.

4. However, the convention creates new risks. Once the underlying is the volatility process,
another issue emerges. For example, traders could add arisk premiumto quoted volati-
lities. Just like the risk premium contained in asset prices, the quotes on volatility may
incorporate a risk premium.

The volatility smile and its generalization, thevolatility surface, could then contain a great
deal of information concerning the implied volatilities and any arbitrage relations between them.
Trading, pricing, hedging, and arbitraging of the smile thus become important.

11. What Is the Volatility Smile?

Consider the Black-Scholes world with vanilla European call and put options written on the
equity price (index),St, that expire on the same dateT . Let Ki denote theith strike of the
option series; andσi theconstantBlack-Scholes instantaneous (implied) volatility coefficient
for the strikeKi. Finally, letr be the constant risk-free rate.

The Black-Scholes setting makes many assumptions beyond that of constant volatility. In
particular, the underlying equity does not make any dividend payments, and there are no tran-
saction costs, tax issues, or regulatory costs. Finally,St is assumed to follow thegeometric
stochastic differential equation (SDE)

dSt = μStdt + σStdWt t ∈ [0, ∞) (48)

whereWt is a Wiener process defined under the probabilityP . Here, the parameterμ may also
depend onSt. The crucial assumption is that thediffusioncomponent is given byσSt. This is
the assumption that we are concerned with in this chapter. The Black-Scholes setting assumes
that the absolute volatility during an infinitesimally small intervaldt is given (heuristically) by12

√
EP

t [(dSt − μStdt)2] = σSt

√
dt (49)

Thus, for a small interval,Δ, we can write thepercentagevolatility approximately as√
EP

t [(ΔSt − μStΔ)2]
St

∼= σ
√

Δ (50)

According to this, asSt changes, the percentage volatility during intervals of lengthΔ remains
approximately constant.

In this environment, a typical put option’s price is given by the Black-Scholes formula

P (St, K, σ, r, T ) = −StN(−d1) + Ke−r(T−t)N(−d2) (51)

with

d1 =
log

(
St

K

)
+

( 1
2σ2 + r

)
(T − t)

σ
√

T − t
(52)

d2 = d1 − σ
√

(T − t) (53)

12 Here,dSt is an infinitesimally small change in the price. It is only a symbolic way of writing small changes, and
the expectation of such infinitesimal increments can only be heuristic.
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Suppose the markets quote implied volatility,σ. To get the monetary value of an option with
strike Ki, the trader will put the current values ofSt, t, andr and the quoted value of the
implied volatility σi at which the trade went through, in this formula. According to this inter-
pretation, the Black-Scholes formula is used to assign a dollar value to a quoted volatility. Con-
versely, given the correct option priceP (.), the implied volatility,σi, for theKi-put could be
extracted.

We can now define the volatility smile within this context. Consider a series ofT-expiration,
liquid, and arbitrage-free out-of-the-money put option prices indexed by the strike pricesKi,
denoted respectively byPKi

:

PK1 , . . . , PKn (54)

for

Kn < · · · < K1 < K0 = St (55)

According to this, theK0-put is at-the-money (ATM) and, asKi decreases, the puts go deeper
out-of-the-money. See Figure 15-8, for an example.

Then, given the (bid or ask) option prices, we can use the Black-Scholes formulabackward
and extract theσi that the trader used to conclude the deal on thePKi . If the assumptions of the
Black-Scholes world are correct, all the implied volatilities would turn out to be the same

σK0 = σK1 = · · · = σKn
= σ (56)

since the put options would be identical except for their strike price. Thus, in a market that
conforms to the Black-Scholes world, the traders would use thesameσ in the Black-Scholes
put formula to obtain eachPKi , i = 0, . . . , n. Going backward, we would then recover the
same constantσ from the prices.13

Yet, if we conducted this exercise in reality with observed option prices, we would find that
the implied volatilities would satisfy

σK0 < σK1 < · · · < σKn
(57)

Out-of-the-money puts Out-of-the-money calls

K2K3 St 5 K0K1

Underlying
priceK4 K5

Payoff

FIGURE 15-8

13 This exercise requires that the put values were indeed obtained at the same timet and were identical in all other
aspects except for theKi.
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In other words, the more out-of-the-money the put option is, the higher the corresponding implied
volatility. As a result, we would obtain a “smiley” curve.

We can also use the implied vols from progressively out-of-the-money call options and
obtain, depending on the underlying instrument, the second half of the smile, as shown in
Figure 15-9.

11.1. Some Stylized Facts

Volatility smiles observed in reality seem to have the following characteristics,

1. Options written onequityindices yield, in general, a nonsymmetricone-sided“smile” as
shown in Figure 15-10a. For this reason, they are often calledskews.

2. TheFX marketsare quite different in this respect. They yield a more or lesssymmetric
smile, as in Figure 15-10b. However, the smile will rarely be exactly symmetric and
it is routine practice in foreign exchange markets to trade this asymmetry using risk
reversals.

3. Options on variousinterest ratesyield a moremonotonousone-sided smile than the equity
indices. The fact that “smile” patterns vary from market to market would suggest, on the
surface, that there are different explanations involved.

It is also natural to think that thedynamicsof the smile vary depending on the sector. This
point is relevant for risk management, running swaption, cap/floor books, and volatility trading.
But, before we discuss it, we consider an example.

Example:

Table 15-1 displays all the options written on the S&P100 index with a very short
expiration. These data were obtained from live quotes early in the morning, so few trades
had passed. However, the option bid-ask quotes were live, in the sense that reasonably
sized trades could be conducted on them.

When the data were gathered, the underlying was trading at 589.14.We use 12 out-of-the-
money puts and 9 out-of-the-money calls to obtain the Black-Scholes implied volatilities.
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The interest rate is taken to be 1.98%, and the time to expiration was 8/365. Using these
values and the bid prices for the options given in the table, the equations

C(St, Ki, r, T, σi) = Ci (58)

P (St, Kj , r, T, σj) = Pj (59)

were solved for the implied vols of calls{σi} and the implied vols of puts{σj}, theCi

and thePj being observed option prices.

The resulting vols were plotted againstKi

St
in Figure 15-11. We see a pronounced

smile. For example, the January 400 put, which traded at about 32% out-of-the-money,
had a volatility of about 26%, while the ATM option traded at an implied volatility
of 18.5%.

OEX options are of American style and this issue was ignored in the example above. This would
introduce an upward bias in the calculated volatilities. This bias is secondary for our purpose,
but in real trading should be corrected. One correction has been suggested by Barone-Adesi and
Whaley (1987).
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TABLE 15-1. OEX Options with January 18, 2002, Expiration

Calls Bid Ask Vol Puts Bid Ask Vol

Jan 550 39.5 41.5 0 Jan 550 0.45 0.75 0
Jan 555 34.8 36.3 0 Jan 555 0.65 0.95 0
Jan 560 30 31.5 0 Jan 560 0.9 1.2 0
Jan 565 25.2 26.7 0 Jan 565 1.25 1.55 0
Jan 570 20.6 22.1 0 Jan 570 1.8 2.1 0
Jan 575 16.3 17.8 0 Jan 575 2.3 3 0
Jan 580 13 13.5 0 Jan 580 3.4 4.1 2
Jan 585 9.1 9.8 0 Jan 585 5 5.7 5
Jan 590 6.1 6.8 50 Jan 590 7.6 7.9 5
Jan 595 4.1 4.5 12 Jan 595 10.1 10.8 25
Jan 600 2.5 2.8 3 Jan 600 13.1 14.5 0
Jan 605 1.2 1.5 0 Jan 605 17.2 18.7 0
Jan 610 0.55 0.85 1 Jan 610 21.7 23.2 0
Jan 615 0.25 0.55 0 Jan 615 26.6 28.1 0
Jan 620 0.2 0.35 1 Jan 620 31.4 32.9 0
Jan 625 0.05 0.2 0 Jan 625 36.3 37.8 0
Jan 630 0 0.15 0 Jan 630 41 43 0
Jan 635 0 0.1 0 Jan 635 46 48 0
Jan 640 0 0.1 0 Jan 640 51 53 0
Jan 645 0 0.1 0 Jan 645 56.5 57.5 0
Jan 650 0 0.1 0 Jan 650 60.5 63.5 0
Jan 660 0 0.05 0 Jan 660 70.5 73.5 0
Jan 680 0 0.05 0 Jan 680 90.5 93.5 0

0.8

0.26

0.24

0.22

0.20

0.18

0.9 1 1.1
K/S

Implied volatility

FIGURE 15-11

11.2. How Can We Define Moneyness?

The way a smile is plotted varies from one market to another. The implied volatility, denoted
by σi, always appears on they-axis. Unless stated otherwise, we extract this volatility from
the Black-Scholes formula in equity or FX markets, and from the Black formula in the case of
interest rates. The implied volatilities are then treated as if they wererandomandtime varying.
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What to put on the horizontal axis is a more delicate question and eventually depends on
how we define “moneyness” of an option. Sometimes the smile is plotted againstmoneyness
measured by the ratio of the strike price to the current market price,Ki/St. If the smile is a
function of how much the option is out-of-the-money only, then this normalization will stabilize
the smile in the sense that asSt changes, the smile for that particular option series may be more
or less invariant. But there are almost always factors other than moneyness that affect the smile,
and some practitioners define moneyness differently.

For example, sometimes the smile is plotted againstKie
−r(T−t)/St. For short-dated options,

this makes little difference, sincer(T − t) will be a small number. For longer-dated options,
the difference is more relevant. By including this discount factor, market practitioners hope to
eliminate the effect of the changes in the remaining life of the option.

Sometimes the horizontal axis represents the option’sdelta. FX traders take the size ofdelta
as a measure of moneyness. This practice can be challenged on the grounds that an option’s
delta depends on more variables than just moneyness. It also depends, for example, on the
instantaneous implied volatility.Yet, as we will see later, there are somedeltasat which volatility
trading is particularly liquid in FX markets.

The reader should note that some of the smiles in Figures 15-11 and 15-12 are plots of the
implied volatility against thestrike only. Also, these curves relate to a particular timet and
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expiration dateT . As the latter change, the smile will, in general, shift. It is quite important to
know how changes in timet and expiration dateT affect the smile.

11.3. Replicating the Smile

The volatility smile is a plot of the implied volatility of options that are alike in all respects except
for their moneyness. The basic shape of the volatility smile has two major characteristics. The
first relates to the extent of symmetry in the smile. The second is about how “pronounced” the
curvature is. There are good approximations for measuring both characteristics.

First, consider the issue of symmetry. Figure 15-12 shows three smiles for FX markets. One
is symmetric, the other two are asymmetric with differentbiases. If the smile is symmetric, the
volatilities across similarly out-of-the-money puts and calls will be the same. This means that if
a trader buys a call and sells a put with the same moneyness, the structure will have zero value.
Such positions were called risk reversals in Chapter 10. A symmetric smile implies that a zero
cost risk reversal can be achieved by buying and selling similarly out-of-the-money options.
In the case of asymmetric smiles, puts and calls with similar moneyness are sold atdifferent
implied volatilities, and this is labeled abias. Thus, a risk reversal is one way of measuring the
bias in a volatility smile.

The way risk reversals measure the symmetry of the volatility smile is shown in Figure 15-13.
We use thedeltaof the option as a measure of its moneyness on thex-axis. ATM options would
have adeltaof around 50 and would be in the “middle” of thex-axis.The volatility of the 25-delta
risk reversal gives the difference between the volatilities of a 25-deltaput and a 25-deltacall as
indicated in the graph. We can write this as

σ(25-delta RR spread) = σ(25-delta put) − σ(25-delta call) (60)

where,σ(25-delta RR spread), σ(25-delta put), andσ(25-delta call) indicate, respectively,
the implied volatilities of a risk reversal, a 25-deltaput, and a 25-deltacall.

The curvature of the smile can be measured using abutterfly. Consider the sale of an ATM
put and an ATM call along with the purchase of one 25-delta out-of-the-money put and a
25-deltaout-of-the-money call. This butterfly has a payoff diagram that should be familiar from
Chapter 10. The position consists of buying two symmetric out-of-the-money volatilities and
selling two ATM volatilities. If there were no smile effects, these volatilities would all be the
same and the net volatility position would be zero. On the other hand, the more pronounced
the smile becomes, the higher the out-of-the-money volatilities would be relative to the ATM
volatilities, and the net volatility position would become more and more positive. Figure 15-14
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shows how a butterfly measures the magnitude of the curvature in a smile. The following
equality holds:

σ(25-delta butterfly spread) = σ(25-delta put) + σ(25-delta call) − 2σ(ATM) (61)

where theσ(25-delta butterfly spread) andσ(ATM) are the butterfly and the ATM implied
volatilities, respectively.

11.3.1. Contractual Equations

Chapters 3 and 4 of this book dealt with contractual equations for simple assets. The equalities
discussed in the preceding paragraphs now permit considering quite different types of contractual
equations. In fact, we can rearrange equalities shown in equations (60) and (61) to generate some
contractual equations for out-of-the-money implied volatilities:

25-deltaput
volatility

= ATM volatility +
1
2

25-delta RR
volatility spread

+
1
2

25-deltabutterfly
volatility spread

(62)

25-deltacall
volatility

= ATM volatility − 1
2

25-delta RR
volatility spread

+
1
2

25-deltabutterfly
volatility spread

(63)

These equalities can be used to determine out-of-the-money volatilities in the case of vanilla
options. For example, ifATM,RRand butterfly volatilities are liquid, we can use these equations



462 C H A P T E R 15. Volatility as an Asset Class and the Smile

to “calculate” 25-deltacall and put volatilities. However, it has to be noted that for exotic options,
adjusting the volatility parameter this way will not work. This issue will be discussed at the end
of the chapter.

12. Smile Dynamics

There are at least two types of smile “dynamics.” In the first, we would fix the time parametert
and consider options with longer and longer expirations,T . In the second case, we would keep
T constant, but let timet pass and study how changes in various factors affect the volatility
smile. In particular, we can observeif changes inSt affect the smile when the moneynessKi/St

is kept constant.
We first keept fixed and increaseT . We considertwoseries of options that trade at the same

timet. Both series have comparable strikes, but one series has a relatively longer maturity. How
would the smiles implied by the two series of options with expirations, say,T1, T2, compare
with each other?

The second question of interest is how the smile of thesameoption series moves over time
asSt changes. In particular, would the smile be a function of the ratioKi/St only, or would it
also depend on the level ofSt over and above the moneyness?

The answers to these questions change depending on which underlying asset is considered.
This is because there is more than one explanation for the existence of the smile, and for different
sectors, different explanations seem to prevail. Thus, before we analyze the smile dynamics and
its properties any further, we need to discuss the major explanations advanced for the existence
of the volatility smile.

13. How to Explain the Smile

The volatility smile is an empirical phenomenon that violates the assumptions of the Black-
Scholes world.At the same time, the volatility smile is related to the implied volatilities obtained
from the Black-Scholes formula. This may give rise to confusion. The smile suggests that the
Black-Scholes formula is not valid, while at the same time, the trader obtains the smile using
the very same Black-Scholes formula. Is there an internal inconsistency?

The answer is no. To clarify the point, we use an analogy that is unrelated to the present
discussion, but illustrates what market conventions are. Consider the 3-month Libor rateLt.
What is the present value of, say, $100 that will be received in 3 months’ time? We saw in
Chapter 3 that all we need to do is calculate the ratio:

100
(1 + Lt

1
4 )

(64)

An economist who is used to a different de-compounding may disagree and use the following
present value formula:

100
(1 + Lt)

1
4

(65)

Who is right? The answer depends on the market convention. IfLt is quoted under the condition
that formula (64) be used, then formula (65) would be wrong if used with thesameLt. However,
we can always calculate a newL∗

t using the equivalence:

100
(1 + Lt

1
4 )

=
100

(1 + L∗
t )

1
4

(66)
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Then, the formula

100
(1 + L∗

t )
1
4

(67)

used withL∗
t would also yield the correct present value. The point is, the market is quot-

ing an interest rateLt with the condition that it is used with formula (64). If for some odd
reason a client wants to use formula (65), then the market would quoteL∗

t instead ofLt.
The result would be the same since, whether we use formula (64) withLt, as the market
does, or formula (65) withL∗

t , we would obtain the same present value. In other words,
the question of which formula is correct depends onhow the market quotes the variable of
interest.

This goes for options also. The Black-Scholes formula may be the wrong formula if we
substitute one particular volatility, but may give the right answer if we use another volatility.
And the latter may be different than the real-world volatility at that instant. But traders can still
use a particular volatility to obtain the right option price from this “wrong” formula, just as in the
earlier present value example. This particular volatility, when associated with the Black-Scholes
formula, may give the correct value for the option even though the assumptions leading to the
formula are not satisfied.

Thus, suppose the arbitrage-free option price obtained under the “correct” assumptions is
given by

C(St, t, T, K, σ∗
t , θt) (68)

whereK is the strike price,T is the expiration date, andSt is the underlying asset price. The
(vector) variableθt represents all the other parameters that enter the “correct” formula and that
may not be taken into account by the Black-Scholes world. For example, the volatility may be
stochastic, and some parameters that influence the volatility dynamics may indirectly enter the
formula and be part ofθt.14 The critical point here is the meaning that is attached toσ∗

t . We
assume for now that it is the correct instantaneous volatility as of timet.

The (correct) pricing function in equation (68) may be more complex and may not even have
a closed form solution in contrast to the Black-Scholes formula,F (St, t, σ). Suppose traders
ignore equation (68) but prefer to use the formulaF (St, t, σ), even though the latter is “wrong.”
Does this mean traders will calculate the wrong price?

Not necessarily. The “wrong” formulaF (St, t, σ) can very well yield the same option price
asC(St, t, K, σ∗

t , θt) if the trader uses inF (St, t, σ), another volatility,σ, such that the two
formulas give the same correct price:

C(St, t, K, σ∗
t , θt) = F (St, t, σ) (69)

Thus, we may be able to get the correct option price from the “unrealistic” Black-Scholes formula
if we proceed as follows:

1. We quote theKi-strike option volatilitiesσi directly at every instantt, under the condition
that the Black-Scholes formula be usedto obtain the option value. Then, liquid and
arbitrage-free markets will supply “correct” observations of the ATM volatilityσ0.15

14 In the case of a mean-reverting stochastic volatility model, we will have

dσt = λ(σ0 − σt)dt + κσtdWt

whereσ0, κ, andλ are, respectively, the long-run average volatility, the volatility of the volatility, and the speed of
mean reversion. Theθt in formula (68) will includeλ, σ0, and the, possibly time varying,γt.

15 Especially FX markets quote such implied volatilities and active trading is done on them.
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2. For out-of-the-money options, we use the Black-Scholes formula with a new volatility
denoted byσ( S

Ki
, S), and

σ

(
S

Ki
, S

)
= σ0 + f

(
S

Ki
, S

)
(70)

wheref(.) is, in general, positive and implies a smile effect. The adjustment made to the
ATM volatility, σ0, is such that whenσ( S

Ki
, S) is used in the Black-Scholes formula, it

gives the correct value for theKi strike option:

F

(
St, t, Ki, σ0 + f

(
S

Ki
, S

))
= C (St, t, Ki, σ

∗
t , θt) (71)

The adjustment factorf( S
Ki

, S) is determined by the trader’s experience, knowledge, and
the trading environment at that instant. The relationships between risk reversal, butterfly,
and ATM volatilities discussed in the previous section can also be used here.16

The trader, thus,adjuststhe volatility of the non-ATM options so that the wrong formula
gives the correct answer, even though what is used in the Black-Scholes formula may not be the
“correct” instantaneous realized volatility of theSt process.

Thef( S
Ki

, S) is, therefore, an adjustment required by the imperfections of the Black-Scholes
formula in adequately representing the real-world environment. The upshot is that when we plot
σ( S

Ki
, S) againstKi/S or Ki we get a smile, or a skew curve, depending on the time and the

sector we are working with.
For what types of situations should the volatilities be adjusted? At least three inconsis-

tencies of the Black-Scholes assumptions with the real world can be corrected for by adjusting
the volatilities across the strikeKi. The first is the lognormal process assumption. The second
is the fact that if asset prices fall dramatically during a relatively short period of time, this could
increase the “fear factor” and volatility would increase. The third involves the organizational
and regulatory assumptions concerning financial markets. We discuss these in more detail next.

13.1. Case 1: Nongeometric Price Processes

Suppose the underlying obeys the true risk-neutral dynamics described by the SDE:

dSt = rStdt + σSα
t dWt t ∈ [0, ∞) (72)

With α = 1, St would be lognormal. Everything else being conformable to the Black-Scholes
world, there would be no smile in the implied volatilities.

The case ofα < 1 would require an adjustment to the volatility coefficient used in the
Black-Scholes formula as the strike changes. This is true, since, unlike in the case ofα = 1,
now the percentage volatility is dependent on the level ofSt. We divide bySt to obtain

dSt

St
= rdt + σSα−1

t dWt t ∈ [0, ∞) (73)

The percentage volatility is given by the termσSα−1
t . This percentage volatility will be a

decreasing function ofSt if α < 1. As St declines, thepercentagevolatility increases. Thus,
the trader needs to use higher implied volatility parameters in the Black-Scholes formula

16 For convenience, thet subscripts are ignored in these formulas.
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for put options with lower and lower strike prices. This means that the more out-of-the-
money the put option is, the higher the volatility used in the Black-Scholes formula
must be.

This illustrates the idea that although the trader knows that the Black-Scholes world is far
from reality, the volatility is adjusted so that the original Black-Scholes framework is preserved
and that a “wrong” formula can still give the correct option value.

13.2. Case 2: Possibility of Crash

Suppose a put option series has an expiration of two months. All options are identical except for
their strike. They run from ATM to deep out-of-the-money. Suppose also that the current level
of St is 100. The liquid put options have strikes 90, 80, 70, and 60.

Here is what the 90-strike option implies. If the option expires in-the-money, then the market
would have fallen by at least 10% in two months. This is a big fall, perhaps, but not a disaster. In
contrast, if the 60-strike put expires in-the-money, this would imply a 40% drop in two months.
This is clearly an unusual event, and unusual events lead to sudden spikes in volatility. Thus,
the 60-strike option is relatively more associated with events that are labeled as crises and,
everything else the same, this option would, in all likelihood, be in-the-money when the volatility
is very high. But when this option becomes in-the-money, itsgamma, which originally is close
to zero, will also be higher. Thus, the trader who sells this option would have higher cash
payouts due todelta hedge adjustments. So, to compensate for these potentially higher cash
payments, the trader would use higher and higher vol parameters in put options that are more
and more out-of-the-money, and, hence, are more and more likely to be associated with a crisis
situation.

This explanation is consistent with the smiley shapes observed in reality. Note that in FX
markets, sudden dropsandsudden increases would mean higher volatility because in each case
one of the observed currencies could be falling dramatically. So the smile will be more or
less symmetric. But in the case of equity markets, a sudden increase in equity prices may be
an important event, but not a crisis at all. For traders (excluding the shorts) this is a “happy”
outcome, and the volatility may not increase much. In contrast, when asset prices suddenly
crash, this increases the fear factor and the volatilities may spike. Thus, in equity markets the
smile is expected to be mostly one-sided if this explanation is correct. It turns out that empirical
data support this contention. Out-of-the-money equity puts have a smile; but out-of-the-money
equity calls exhibit almost no smile.

Example:

Consider Table 15-2 which displays the prices of options with June 2002 expiry, on
January 10, 2002, and ignore issues related to Americanness or any possible payouts.
These data are collected at the same time as those discussed in the earlier example. In
this case, the options are longer dated and expire in about 6 months. First, we obtain the
volatility smile for these data.

The data are collected at the same instant, and since the current value of the underlying
index is the same in each case, the division bySt0 is not a major issue, but we still prefer
to graph the volatility smile against theKS .

We extract ask prices for the eight out-of-the-money puts and consider the 600-put as
being in-the-money. This way we can calculate nine implied vols. The price data that we
use are shown in Table 15-2. We consider first the out-of-the-money put asking prices
listed in the sixth column of this table. This will give nine prices.
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TABLE 15-2. OEX Options with June 21, 2002, Expiry (collected 9:46 CBOT on January 10, 2002)

Calls Bid Ask Puts Bid Ask

Jun 440 153.4 156.4 Jun 440 4.2 4.8
Jun 460 134.8 137.8 Jun 460 5.6 6.3
Jun 480 116.7 119.7 Jun 480 7.4 8.1
Jun 500 99.2 102.2 Jun 500 9.9 10.6
Jun 520 82.6 85.6 Jun 520 12.9 14.4
Jun 540 67.2 69.7 Jun 540 17.2 18.7
Jun 560 52.7 55.2 Jun 560 22.7 24.2
Jun 580 39.8 41.8 Jun 580 29.3 31.3
Jun 600 28.6 30.6 Jun 600 38.3 40.3
Jun 620 19.9 21.4 Jun 620 49.5 51.5
Jun 640 12.8 14.3 Jun 640 62.2 64.7
Jun 660 8 8.7 Jun 660 76.9 79.9
Jun 680 4.7 5.4 Jun 680 93.7 96.7
Jun 700 2.55 3.2 Jun 700 111.6 114.6

Ignoring other complications that may exist in reality, we use the Black-Scholes formula
straightforwardly with

St0 = 589.15, r = 1.90%, t =
152
365

= 0.416 (74)

We solve the equations

P (589.15, Ki, 1.90, σKi
, 0.416) = PKi

i = 1, . . . , 9 (75)

and obtain the nine implied volatilitiesσKi . Using Mathematica, we obtain the following
result, which shows the value ofKi/S and the corresponding implied vols for out-of-
the-money puts:

K
S Vol

0.74 0.26
0.78 0.26
0.81 0.26
0.84 0.25
0.88 0.25
0.91 0.24
0.95 0.23
0.98 0.22
1.01 0.21

This is shown in Figure 15-15. Clearly, as the moneyness of the puts decreases, the
volatility increases. Option market makers will conclude that, if in 6 months, U.S. equity
markets were to drop by 25%, then the fear factor would increase volatility from 21%
to 26%. By selecting the seven out-of-the-money call prices, we get the implied vols for
out-of-the-money calls.
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K
S Vol

0.98 0.23
1.01 0.22
1.05 0.21
1.08 0.20
1.12 0.19
1.15 0.19
1.18 0.18

Here, the situation is different. We see that as moneyness of the calls decreases, the
volatility also decreases.

Option market makers may now think that if, in 6 months, U.S. equity markets were to
increase by 20%, then the fear factor would decrease and so would volatility.

The fear of a crash that leads to a smile phenomenon can, under some conditions, be repre-
sented analytically using the so-called jump processes. We discuss this modeling approach next.

13.2.1. Modeling Crashes

Consider again the standard geometric Brownian motion case:

dSt = rStdt + σStdWt t ∈ [0, ∞) (76)

Wt is a Wiener process under the risk-neutral probabilityP̃ . Now, keep the volatility param-
eterization the same, but instead, add a jump component as discussed in Lipton (2002). For
example, let

dSt = rStdt + σStdWt + St

[
(ej − 1)dJt − λmdt

]
t ∈ [0, ∞) (77)

Some definitions are needed regarding the term(ej − 1)dJt − λmdt. The j is the size of a
randomlogarithmic jump. The size of the jump is not related to the occurrence of the jump,
which is represented by the termdJt. If the jump is of size zero, then(ej −1) = 0 and the jump
term does not matter.
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The termdJt is a Poisson-type process. In general, at timet, it equals zero. But, with
“small” probability, it can equal one. The probability of this happening depends on the length
of the interval we are looking at, and on the size of theintensity coefficientλ. The jump can
heuristically be modeled as follows

dJt =

{
0 with probability(1 − λdt)

1 with probabilityλdt
(78)

where0 < dt is an infinitesimally short interval. Finally,m is the expected value of(ej − 1):

EP̃
t [(ej − 1)] = m (79)

Thus, we see that, for an infinitesimal interval we can heuristically write

EP̃
t [(ej − 1)dJt] = EP̃

t [(ej − 1)]EP̃
t [dJt] (80)

= m[0.(1 − λdt) + 1.λdt] (81)

= mλdt (82)

According to this, the expected value of the term(ej − 1)dJt − λmdt is zero.
This jump-diffusion model captures some crash phenomena. Stock market crashes, major

defaults, 9/11–type events, and currency devaluations can be modeled as rare but discrete events
that lead to jumps in prices.

The way these types of jumps create a smile can be heuristically explained as follows: In
a world where the Black-Scholes assumptions hold, with a geometricSt process, a constant
volatility parameter̃σ, andno jumps, the volatility trade yields the arbitrage relation:

1
2
Cssσ̃

2S2 + Ct + rCsS − rC = 0 (83)

With a jump term added to the geometric process as in equation (77), the corresponding arbitrage
relation becomes

1
2
C∗

ssσ
2S2 + C∗

t + (r − λm)C∗
s S − rC∗ + λEP̃

t [C∗(Sej , t) − C∗(S, t)] = 0 (84)

whereP̃ is the risk-neutral probability. Suppose we decide to use, as a convention, the Black-
Scholes formula, but believe that the true PDE is the one in equation (83). Then, we would select
σ̃ such that the Black-Scholes formula yields the same option value as the other PDE would
yield.

For example, out-of-the-money options will have much smallergammas,Css. If the expected
jump is negative, theñσ will be bigger, and the more out-of-the-money the options are. As the
expiration dateT increases,Css will increase and the smile will be less pronounced.

13.3. Other Explanations

Many other effects can cause a volatility smile. One isstochastic volatility. Consider a local
volatility specification using

dSt = μStdt + σSα
t dWt t ∈ [0, ∞) (85)

with, say,α < 1. In this specification, percentage volatilitywill be stochastic since it depends on
the random variableSt. But often this specification does not express what is meant by models of
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stochastic volatility. What is captured by stochastic volatility is a situation where an additional
Wiener processdBt, possibly correlated withdWt, affects the dynamics of percentage volatility.
For example, we can write

dSt = μStdt + σtStdWt t ∈ [0, ∞) (86)

dσt = a(σt, St)dt + κσtdBt t ∈ [0, ∞) (87)

whereκ is the parameter representing the (constant) percentage volatility of the volatility of
St. In this model, the volatility itself is driven by some random increments that originate in the
volatility marketonly. These shocks are only partially correlated with the innovation termsdWt

affecting the price data.
It can be shown that stochastic volatility generates a volatility smile. In fact, with stochastic

volatility, we can perform an analysis similar to the PDE with a jump process (see Lipton (2002)).
The result will essentially be similar. However, it is important to emphasize that, everything else
being the same, this model may be incomplete in the sense that there may not be enough
instruments to hedge the risks associated withdWt and dBt completely, and form a risk-free,
self-financing portfolio. The jump-diffusion model discussed in the previous section may entail
the same problem. To the extent that the jump part and the diffusion part are affected by different
processes, the model may not be complete.

13.3.1. Structural and Regulatory Explanations

Tax effects (Merton, 1976) and the capital requirements associated with carrying out-of-the-
money options in options books may also lead to a smile in implied volatility. We briefly touch
on the second point.

The argument involves the concept ofgamma. A negativegammaposition is considered
to be more risky, the more out-of-the-money the option is. Essentially, negativegammameans
that the market maker has sold options anddeltahedged them, and that he or she is paying the
gammathrough the rebalancing of this hedge. If the option is deep out-of-the-money,gamma
would be close to zero. Yet, if the option suddenly becomes in-the-money, thegammacould
spike, especially if the option is about to expire. This may cause significant losses. Out-of-the-
money options, therefore, involve substantial risk and require more capital. Due to such costs,
the market maker may want to sell the out-of-the-money option at a higher price than warranted
by the ATM volatility.

14. The Relevance of the Smile

The volatility smile is important in financial engineering for at leastthreereasons.
First, if we associate a volatility smile with all the risk factors, and if this smile shifts

randomly over time, then we may be able totradeit, take spread positions, and arbitrage it. The
smile dynamics, thus, imply new opportunities for a market professional.

The second reason for the relevance of the volatility smile is that it may contain important
information about the dynamics of the underlying realized volatility processes. With a volatility
smile, pricing and hedging may become much more complicated, especially if the instrument
has characteristics of an exotic option. Is volatility constant or a stochastic process? If the latter
is the case, then what type of stochastic process is it? Are there jumps or is a process with
Wiener-type increments a sufficiently good approximation? These questions are important for
risk management and pricing.

Third, the creation of new products and synthetics must pay attention to the causes of the
smile. If the smile is the result of conventions and practices adopted by market professionals
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rather than resulting from the underlying volatility processes, we must take these conventions
into account. We now discuss these issues in more detail and provide some examples to the uses
of the volatility smile.

15. Trading the Smile

The volatility smile is actively traded to a different extent in different sectors. The smile is
an integral part of daily trading in the FX sector. Here, market practitioners routinely quote
risk reversals, which relate to the symmetry in exchange rate volatility and butterflies related
to the curvature of the smile. Traders trade and arbitrage these effects. The volatility smile is
also traded in the equity sector. Traders arbitrage volatility across stock market indices, and in
doing this, sometimes trade the smile indirectly. At other times, this trade is direct. The smile
relating to a risk may be too steep and is expected to flatten. The trader then sells the deep
out-of-the-money options and buys those that are closer to being at-the-money. In the interest
rate sector, volatility smile is mainly traded due to its risk management and hedging implications
for cap/floor positions and swaption books.

Smiles can be of interest to investors who may want to take positions on the slope and the
curvature of the volatility smile, thinking that the market has under- or overemphasized one of
the underlying parameters. In the following example, traders are putting togetherskew swaps
that will traderealizedskews againstimpliedskews.

Example:

As the skew in volatility between out-of-the-money puts and calls on Standard & Poor’s
500 index has grown, street traders are looking to capture discrepancies between the
realized and implied skews of the options. One trader in New York noted interest in a
skew swap on the S&P500 from hedge funds trading volatility. The swaps—which traders
believe would be a first—would offer the realized skew of puts and calls in return for the
implied skew.

Currently, the S&P skew is above 30—if strikes on puts and calls are moved by 10%,
the volatility would [increase by] 3%, explained one structurer. This compares with
a level of 15 at the beginning of October, which is in line with the historical levels
of 15–20.

One structurer who had tried to put together a skew swap noted that there is no
mathematical formula that can capture implied skews for any period of time. He also
admitted to being stumped by hedging the product. “To hedge this, we would have
to close every night with a vol swap on the deal and that can’t always be done,” he
said. A rival noted that one popular trade to capture flattening skews is selling out-of-
the-money puts and calls and buying at-the-money puts and calls. (Derivatives Week,
November 1998)

One interesting point in this reading is that, at least in this particular case, the observed
smile (skew) is characterized by multiplying alinear relationship with a slope of .3. According
to the traders, if moneyness decreases by 10%, volatility increases by 3%. Traders expect this
relationship to be around .15 during normal times. Hence, the smile is expected to flatten.

16. Pricing with a Smile

Pricing and hedging are fairly closely related activities, at least in abstract settings. Once an asset
is replicated with liquid securities, the price of the asset is the cost of the replicating portfolio
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plus some profit margin. At several points in the previous chapters, we saw that assets can be
replicated using a series of options with different strike prices. This was the method applied
for finding a hedge for a volatility swap in Chapter 14, for example. The replicating portfolio
was made of a weighted sum of relevant options with the same characteristics except for their
strikes. In Chapter 11 we saw that option portfolios could replicate statically almost any future
payoff function. Again, these options were similar except for their strike prices.

The potential use of options with different strikes makes the volatility smile a crucial param-
eter in forming hedging portfolios and in pricing complex instruments. In fact, if implied volatil-
ities depend on the moneyness of the option, then the volatility parameters used in formulas
for replicating portfolios would automatically change as the markets move and the money-
ness of the replicating options changes. The critical point is that this will be true even if the
underlyingrealizedvolatility remains the same. This section presents two examples of this
phenomenon.

The first involves the class of interest rate derivatives known as caps and floors. These
are among the most widely traded instruments. Their hedging and pricing are influenced in a
crucial way if there is a volatility smile. The second involves the pricing and hedging of exotic
options. Here also, the methodology and market practices crucially depend on the existence of
the volatility smile.

We start this discussion with a simple framework for caps/floors. We use a limited number of
settlement dates to motivate the main points and the importance of the smile.Ageneral treatment
of these instruments can be found in a number of excellent texts.17

17. Exotic Options and the Smile

The second major category of instruments where the existence of the volatility smile can change
pricing and hedging practices significantly is exotic options. In this section, we consider a
simple knock-out call that is representative of the main ideas we want to convey. Due to the
contractual equation between vanilla options, knock-out calls, and knock-in calls, our discussion
immediately extends to knock-in calls as well.At the end of this section, we briefly discuss digital
options and how the existence of the volatility smile affects them.

17.1. A Hedge for a Barrier

Knock-out calls were discussed in Chapters 8 and 10. As a reminder, a simple knock-out call
is similar to a European vanilla call with strikeK and expirationT , written on the underlying
St, except that the option will cease to exist if, during the life of the option,St falls below
barrierH:

St < H t ∈ [t0, T ] (88)

The price of a knock-out barrier approaches the price of a vanilla call as the option becomes more
in-the-money. However, as the underlying approaches the barrier, the value of the knock-out
will approach zero.

There are several ways of hedging knock-out options used by practitioners. Here, we explain
a hedge that (1) has nice financial engineering implications, and (2) shows clearly the important
role played by the smile.

Suppose we bought the corresponding vanilla calland sold a carefully chosen out-of-the
money vanilla put with strikeK∗, K∗ < K, with a very precise objective. We want the put

17 For example, see Hull (2002), Musiela and Rutkowski (1998), and Rebonato (2002).
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and the call be such that, asSt approaches the barrierH, the portfolio’s value becomes zero.
This portfolio, which is, in fact, a type of risk reversal, approximately replicates the knock-out
option. IfSt moves away from theH, the put becomes more out-of-the-money, and its value will
decline. Then the portfolio looks more and more like a vanilla call. This is what the knock-out
option accomplishes anyway. On the other hand, asSt approachesH, the put becomes more
valuable. If it is carefully chosen, atH the value of the put position can equal the value of the
vanilla call and the portfolio would have zero value. This is, again, what the knock-out option
accomplishes nearH. As St falls below H, the portfolio has to be liquidated.

Thus, the portfolio of

{Short x units of K∗-Put, Long one K-Call} (89)

replicates the knock-out call ifx andK∗ are appropriately selected. One way to do this is to use
the “symmetry” principle.

Suppose there is no smile effect and that all options with different strikes that belong to a
series have thesamevolatility. Then we can choosex andK∗ as follows: We want the value of
x units of theK∗-put to equal the value of the vanilla call whenH ← St. This can be achieved
by choosingK∗ such that

K∗K = H2 (90)

The prices of these options are assumed to satisfy

K∗-put
K-call

=

√
K∗

K
(91)

This means that ifx is chosen so that

x =
K

K∗ (92)

then the value ofxunits of theseK∗-puts would equal the value of theK-call asSt approachesH.
As a result, the portfolio would replicate the knock-out call, except that once the barrier is hit,
the portfolio needs to be liquidated.

17.2. Effects of the Smile

Consider first the effect of a stable volatility smile on this procedure. If the smile does not
shift over time, then it is easy to incorporate the effect into the previous replicating portfolio.
Suppose the smile is downward sloping over[K∗, K]. Then, one could plug different volatility
parameters in Black-Scholes formulas for each vanillla option. The sameK∗-put selected earlier
would be relatively more valuable than in the case of a flat smile. This means that the knock-out
option could be sold at a cheaper price. If the smile was upward sloping over the range, then
the reverse would be true and the knock-out would be more expensive. Hence, the smile has a
direct effect that needs to be taken into account in the pricing and hedging of the knock-out.

There is a second effect of the smile as well. Suppose the smile isnot stable during the life
of the option, and that it shifts as time passes. Then the logic of replication would fall apart
since a smile that shifts over time would make the relative values of the call and the put differ
from the originally intended ratio asSt approachesH. Given that in most markets the smileis
unstable over time, the hedging technique by this replication is questionable. The pricing of the
knock-out would also be unreliable.
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17.2.1. An Example of Technical Difficulties

We can look at the complications introduced by the volatility smile using knock-out pricing
formulas in case all standard assumptions are satisfied. The pricing formula for knock-outs was
given in Chapter 8. In particular, the price of a down-and-out call written on a stockSt, satisfying
all standard assumptions, and paying no dividends, was given by

Cb(t) = C(t) − J(t) (93)

whereC(t) is the value of a vanilla call, given by the standard Black-Scholes formula, and
whereJ(t) is the “discount” that needs to be applied because the option may die ifSt falls
belowH during the life of the contract. The formula forJ(t) was

J(t) = St

(
H

St

) 2(r− 1
2 σ2)

σ2 + 2
N(c1) − Ke−r(T−t)

(
H

St

) 2(r− 1
2 σ2)

σ2

N(c2) (94)

where

c1,2 =
log H2

StK
+ (r ± 1

2σ2)(T − t)

σ
√

T − t
(95)

Note that just like the Black-Scholes formula, this pricing function contains asinglevolatility
parameterσ. In the plain vanilla case, this parameter could be manipulated to make the formula
yield the correct answer, even when the underlying assumptions do not hold. Thus, in a smile
environment with nonconstant volatilities, the trader could useone value for volatility and
make the formula yield the correct answer. In fact, this was used in pricing caps and floors even
though the volatilities of the individual forward rates that are relevant to these instruments were
different.

Unfortunately, this approach is not guaranteed to work for the down-and-out call pricing
formula given here if a volatility smile exists and if this smile is continuously (and stochastically)
shifting over time. In fact, there may not be a singlewell-behavedvolatility value to replace in
equation (94) to obtain the correct price of the down-and-out call. Even when the realized and
ATM implied volatilities remain the same, if the slope of the smile changes, the price of the
down-and-out call may change as in the previous argument. In fact, if the smile becomes less
negatively sloped, the short put component of the replicating portfolio will become relatively
less expensive and the value of the down-and-out call may increase. Hence, in the case of exotic
options, the relationship between volatility adjustments and the correct option price may become
much more complex as smile effects become significant.

17.2.2. Pricing Exotics

Actual trading takes place in the presence of a volatility smile, and the prices of exotic options
need to be set so as to take into account the future costs and benefits of adjusting the hedge
to the exotic option. With the presence of smile, as time passes, thevegahedge of an exotic
option book needs to be adjusted for the reasons explained earlier. As this happens, depending
on the net position of the option book, the trader may realize some net cash gains or losses. The
present value of these “expected” cash gains and losses needs to be incorporated into the market
price. At the end, the market price of the exotic may be higher or lower than the theoretical price
indicated by equation (94).
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17.3. The Case of Digital Options

Chapter 10 showed that a theoretical replication of a European digital call with strikeK and
expirationT would be to buy1/h units of the vanilla call with strikeK and to sell1/h units of
the vanilla call with strikeK +h. In this caseh would be the minimum tick in a futures market.

If there is a volatility smile, then the prices of these vanilla calls would need to be adjusted
since they have different strikes and, therefore, different volatilities. Of course, ifh is small, this
volatility difference would be small as well, but then1/h would be large and the position would
involve buying and selling a large number of vanilla calls. With such numbers, small variations
in volatilities can make a difference on the end result.18

17.4. Another Application: Risk Reversals

One of the most liquid ways of trading the smile is using risk reversals from FX markets.
Consider options written on an exchange rateet. Fix the expiration atT , and arrange the puts
and calls by their strike priceKi. Then calculate these options’deltasand consider a grid of
reasonabledeltas. We use the options’deltasto represent the moneyness.

A typical smile for these exchange rate options will then look like the one shown in
Figure 15-13. It is a “symmetric” curve, and is plotted in a two-dimensional graph having the
percentage volatility on the vertical axis and the option’sdelta on thex-axis. In particular,
consider the 25, 50, and 75-deltaoptions.19

We look at the following example.

Example:

Activity in the dollar/yen foreign exchange markets over the past fortnight has emphasized
the severe complexities associated with pricing exotic options. More importantly, it has
provided sophisticated option houses with an opportunity to test their pricing theories
against each other and against their less-advanced competitors.. . .

However, it was not the decline in the spot rate itself that provided the interest for
options dealers but the resulting risk-reversal position. Risk-reversal is an expression
of the directional preference in the market. If spot is expected to fall, as in the case
of dollar/yen, then there will be greater demand for puts relative to calls, and so the
volatility trader will pay a higher price for the puts than the calls. The upshot of this,
said one commentator, is that volatility is not constant, as assumed by the standard
Black-Scholes option-pricing model, but instead changes according to the option delta.

One-month dollar/yen risk reversal shot up to nearly 3 last week and has continued to
hover at levels not seen since the summer of 1995. This extraordinary situation enabled
sophisticated traders to find value in the pricing of their so-called naive counterparts.

“A lot of banks must have learned a lot about risk-reversal over the past few days,” said
one trader. According to market insiders, the less advanced houses failed to adequately
account for the effects of risk-reversal in pricing and hedging exotic structures such as
knock-out and path-dependent options.

18 In addition, note that this hedge requires selling and buying volatilities and, hence, is subject to variations in the
volatility bid-ask spreads.

19 Practitioners multiply the Black-Scholesdeltaby 100 in their daily usage of this concept.
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They also asserted that simple off-the-shelf option pricing software was unable to cope
with pricing exotic derivatives in a risk-reversal scenario. These packages did not allow
the user to enter different volatilities for different deltas and so failed to capture the
nuances of exotics pricing.

However, other commentators argued that this too was an over-simplification and that
other “third-order” effects came into play when hedging certain types of options in very
high risk-reversal scenarios. They added that the third-order effects meant the barrier
described might not be overpriced by the Black-Scholes user, merely mispriced. (IFR,
Issue 1188 June 1997)

As this reading illustrates, risk reversals are creations of the volatility smile in FX markets
and are heavily traded. But, as indicated in the reading, market practitioners involved in risk
reversal trading are clearly dealing with the underlying smile dynamics. The dynamics can
become very complex. Pricing and hedging such positions on exotic options may become much
more difficult.

18. Conclusions

The volatility smile is a fascinating topic in finance. Yet, it is also a complex phenomenon and
more research needs to be done on its causes and on the ways to model it. This chapter offered
a simple introduction. However, it has illustrated some of the essential points associated with
this topic.

Suggested Reading

The text byBrigo and Mercurio (2001) deals with the volatility smile in the interest rate sector.
For equity smiles, the reader should consult the papers byDerman et al. (1994) and (1996), at
minimum. A comprehensive treatment of the volatility smile is provided inLipton (2002).Taleb
(1996) is the source that we used to discuss most market practices. There is also a flurry of
papers dealing with empirical and theoretical issues involving the volatility smile. One recent
source isJohnson and Lee (2003). The cited sources contain further references on the previous
research.
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Exercises

1. Consider the following table displaying the bid-ask prices for all options on the OEX
index passed on January 10, 2002, at 9:46. These options have February 22, 2002, expiry
and at the time of data collection, the underlying was at 589.14.

Calls Bid Ask Vol Puts Bid Ask Vol

Feb 400 188.9 191.9 0 Feb 400 0.05 0.2 0
Feb 420 169 172 0 Feb 420 0.1 0.4 0
Feb 440 149.2 152.2 0 Feb 440 0.25 0.55 0
Feb 460 129.4 132.4 0 Feb 460 0.45 0.75 0
Feb 480 109.6 112.6 0 Feb 480 0.8 1.1 0
Feb 500 90.2 92.7 0 Feb 500 1.4 1.7 0
Feb 520 71 73.5 0 Feb 520 2.5 2.8 0
Feb 530 61.6 64.1 0 Feb 530 2.8 3.5 0
Feb 540 52.4 54.9 0 Feb 540 3.7 4.4 0
Feb 550 43.8 45.8 0 Feb 550 4.9 5.6 1
Feb 560 35.4 37.4 0 Feb 560 6.6 7.3 0
Feb 570 27.9 29.4 0 Feb 570 8.9 9.6 0
Feb 580 20.8 22 0 Feb 580 11.8 12.8 0
Feb 590 14.8 15.8 0 Feb 590 15.8 16.8 1
Feb 600 10 10.7 1 Feb 600 20.8 22 0
Feb 610 6.1 6.8 0 Feb 610 27.1 28.6 0
Feb 615 4.6 5.3 0 Feb 615 31 32 0
Feb 620 3.4 4.1 0 Feb 620 34.3 36.3 0
Feb 630 1.9 2.2 0 Feb 630 42.8 44.8 0
Feb 640 0.9 1.2 0 Feb 640 52 54 0
Feb 650 0.4 0.7 0 Feb 650 61.4 63.9 0
Feb 660 0.15 0.45 0 Feb 660 71.2 73.7 0
Feb 680 0 0.25 0 Feb 680 90.8 93.8 0
Feb 700 0 0.2 100 Feb 700 110.8 113.8 0

(a) Using the out-of-the-money ask prices for the puts, calculate the implied
volatility for the relevant strikes. Plot the volatility smile againstK/S.

(b) Using the out-of-the-money bid prices for the puts, calculate the implied
volatility for the relevant strikes. Plot the volatility smile againstK/S.
Are the bid-ask spreads for these vols constant?

(c) Using the out-of-the-money ask prices for the calls, calculate the implied vol
for the relevant strikes. Plot the volatility smile againstK/S. When you put
this figure together with the out-of-the-money put volatilities, do you obtain a
smile or a skew?

2. Consider the following statement:

One prop trader noted that cap/floor volatility should be slightly higher than
swaptions. Corporates buy caps and investors sell swaptions through callable
bonds, said one London-based prop trader. The market is structurally short
caps and long swaptions.
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(a) Swaptions are options to get into swaps in a predetermined data, at a
predetermined rate. Explain why, according to this reading, cap/floor volatility
should be higher than swaption volatility.

(b) What are some plausible reasons for the market to be structurally short of caps
and long on swaptions?

(c) What would this statement mean in terms of hedging and risk management?


